月球与行星科学国际学术研讨会
International Symposium on Lunar and Planetary Science
Scientific Organization Committee

Honorary Chairs:
Ziyuan Ouyang (NAO, China) Aoao Xu (MUST, Macau)

Co-Chair:
Wing-Huen Ip (NCU, Taiwan/ MUST, Macau) Peijian Ye (CAST, China)

Members:
Sushil Atreya (U. Michigan, USA) Michel Blanc (ISSI-Beijing, China)
Jinbao Cao (Beihang U., China) Alberto Cellino (INAF-OAT, Italy)
Kwing Lam Chan (MUST, Macau) Jin Chang (PMO, China)
Kaichang Di (IRSDE, CAS, China) James Head (Brown U., USA)
Chengli Huang (SAO, CAS, China) Hejiu Hui (Nanjing U., China)
Jianghui Ji (PMO, China) Kyeong J. Kim (KIGAM, South Korea)
Louchuang Lee (NCU, Taiwan) Hui Lin (CUHK, Hongkong)
Yangting Lin (IGG, CAS, China) Hong Liu (Beihang U., China)
Jingsong Ping (NAO, China) Liping Qin (USTC, China)
Peter Read (U. Oxford, UK) Rafael Rodrigo (ISSI, Switzerland)
Dmitri Titov (ESA) Hunter Waite (SRI, USA)
Chi Wang (NSSC, China) Junichi Watanabe (NAOJ, Japan)
Kai Wuennemann (Free U. Berlin, Germany) Peter Wurz (U. Bern, Switzerland)
Long Xiao (CUG, Wuhan, China) Jiangguo Yan (Wuhan U. China)
Keke Zhang (U. Exeter, UK/MUST, Macau) Rongqiao Zhang (CLAEP, China)
Tielong Zhang (USTC, China) Qiugang Zong, (Peking U., China)
Yongliang Zou (CSSAR, CAS, China)

Local Organization Committee
(MUST, Macau)

Bao Mei Xiaoping Zhang Yinsheng Gu Tinlong Lei
Jinghui Chen Qing Gao Yuting Zhang Weishan Jin
Vongchi Leong Meng-Hua Zhu Ying Liao Yuji Harada
Dongdong Ni Roberto Bugiolacchi Guoping Hu Feng Zhang
Keynote Speeches

Yan Geng (Lunar Exploration and Space Program Center of CNSA)

Mr. Yan Geng is the director of deep space exploration department at Lunar Exploration and Space Program Center (LESPC) of CNSA. He dominates system argumentation, overall design and project management of China’s first Mars exploration mission, as well as demonstration of the China’s Deep Space Exploration Program.

Sushil Atreya (University of Michigan / Jet Propulsion Lab)

Sushil Atreya is a professor of climate and space sciences and engineering at the University of Michigan and a Distinguished Visiting Scientist at the Jet Propulsion Lab (JPL), California Institute of Technology. He specializes in planetary science. His research is highly interdisciplinary, cutting across traditional scientific disciplines in order to address such fundamental questions as the origin and evolution of planetary and satellites atmospheres, climate evolution, planetary habitability, and the synergy between exoplanets and the solar system. He has published a textbook on the outer planets and edited three other books. He has also authored more than 250 research articles and book chapters as well as several popular scientific articles. Sushil Atreya is presently a coinvestigator on the Curiosity Rover of Mars Science Laboratory and Juno Jupiter Polar Orbiter, and in the past on the Cassini-Huygens mission to the Saturn system, Galileo Jupiter orbiter and probe mission, Voyager giant planets and interstellar missions, and ESA’s Mars Express and Venus Express missions. Sushil Atreya is a Fellow of the American Association for the Advancement of Science (AAAS; elected 2005), Fellow of the Japan Geoscience Union (JpGU; elected 2018), Full Member of the International Academy of Astronautics (IAA; elected 1993), recipient of David Bates Medal of the European Geoscience Union (EGU; 2016) and Al Seiff Memorial Award presented annually at the International Planetary Probe Workshop (IPPW; 2018).
Chi Wang (National Space Science Center, Chinese Academy of Sciences)

Prof. Chi Wang, Director General of the National Space Science Center, Chinese Academy of Sciences, also the Director of the State Key Laboratory of Space Weather. He graduated from the University of Science and Technology of China, and got his Ph.D. degree from the Massachusetts Institute of Technology, USA. His research interesting focuses on the large-scale solar wind structures in the heliosphere and the interaction of the solar wind with the magnetosphere. He worked on the plasma experiments on Voyager 2 and developed a multi-fluid solar wind model. Starting from 2002, he led the effort to establish the first state key laboratory of space weather in China, and to develop of a global MHD model of the interaction of the solar wind with the magnetosphere. He has published more than 200 peer-reviewed papers including Nature, JGR etc. He was the PI of the Chinese Meridian Project, which is the ground-based space environment monitoring chain in China. He currently is the Co-PI of the solar wind – magnetosphere – ionosphere link explorer (SMILE), an ESA-China joint space science mission, and the deputy chief engineer of the Chinese Lunar Exploration CE-4 mission.

James W. Head (Dept. of Geological Sciences, Brown University)

Prof. Jim Head is the Louis and Elizabeth Scherck Distinguished Professor of Geological Sciences, Brown University. In his early work with the NASA Apollo program, he analyzed potential landing sites, studied returned lunar samples and data, and provided training for the Apollo astronauts. His current research centers on the study of the processes that form and modify the surfaces, crusts and lithospheres of planets, how these processes vary with time, and how such processes interact to produce the historical record preserved on the planets. Comparative planetology, the themes of planetary evolution, and application of these to the study of early Earth history are also of interest. He has followed up his research on volcanism, tectonism and glaciation with field studies on active volcanoes in Hawaii and at Mount St. Helens, on volcanic deposits on the seafloor with three deep sea submersible dives, and during five field seasons in the Antarctic Dry Valleys.

He has served as an investigator with NASA and Russian Space Missions, such as the Soviet Venera 15/16 and Phobos missions, and the US Magellan (Venus), Galileo (Jupiter), Mars Surveyor, Russian Mars 1996, and Space Shuttle missions.

Dr. Head is presently a co-investigator for the NASA MESSENGER mission to Mercury and the Lunar Reconnaissance Orbiter, as well as the European Space Agency’s Mars Express Mission.

program
WEEK AT A GLANCE

<table>
<thead>
<tr>
<th>Time</th>
<th>June 12</th>
<th>June 13 Wednesday</th>
<th>June 14 Thursday</th>
<th>June 15 Friday</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:30-09:00</td>
<td>On-desk reception (N101)</td>
<td></td>
<td>Keynote talk: 4 (N101)</td>
<td>Poster awards (N101)</td>
</tr>
<tr>
<td>09:00-09:30</td>
<td>Open ceremony and group photo (N101)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09:30-10:00</td>
<td>Keynote talks: 1&2 (N101)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:00-11:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00-11:30</td>
<td>Coffee break (venue: in front of N108)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:30-13:00</td>
<td>LS1 (N101)</td>
<td>TP1 (N212)</td>
<td>LS4 (N101)</td>
<td>TP4 (N212)</td>
</tr>
<tr>
<td>13:00-14:00</td>
<td>Lunch break (venue: student canteen, E building)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14:00-15:30</td>
<td>LS2 (N101)</td>
<td>TP2 (N212)</td>
<td>LS5 (N101)</td>
<td>ST (N212)</td>
</tr>
<tr>
<td>15:30-16:00</td>
<td>Coffee break (venue: in front of N108)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16:00-17:30</td>
<td>Keynote talk: 3 & Special invited talks (N101)</td>
<td>Poster Session (venue:N108)</td>
<td>SB4 (N101)</td>
<td>OP2 (N212)</td>
</tr>
<tr>
<td>17:30-18:30</td>
<td>Welcome reception (venue: 5th floor, A building)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18:30-19:00</td>
<td>Welcome banquet</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19:00-20:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remarks:
1. LS=Lunar Science, OP=Outer Planets, TP=Terrestrial Planets, PS=Plasma Science, SB=Small Bodies, ST = Special Topic;
2. Keynote1 = Yan Geng; Keynote 2 = Sushil Atreya; Keynote 3 = Chi Wang; Keynote 4 = James W. Head
3. N101 = Room 101, N building; N212 = Room 212, N building
Note:

1. The LOC members and the helper wear the sky-blue T-shirt.
2. Please check your sliders before the start of your session.
3. We encourage you to stick your poster from June 13 and take it away at the end of poster session.
4. We encourage you to wear the ISLPS T-shirt.

<table>
<thead>
<tr>
<th>Guests WiFi guideline:</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Select “MUST-DOT1X”</td>
</tr>
<tr>
<td>b. Username: ssipub</td>
</tr>
<tr>
<td>c. Password: Space12345</td>
</tr>
</tbody>
</table>
Tuesday Evening, June 12
17:30 – 19:00 Welcome party (venue: 5th floor, A building)

Wednesday Morning, June 13
08:30 – 09:00 On-desk Reception (venue: in front of N101)
09:00 – 10:00 Open Ceremony and Group Photo (venue: N101)
Wednesday Morning, June 13

Keynote Talks, Room N101

Chair: Kwing Lam Chan

10:00 – 10:30 **Yan Geng**
abstract ID: 160
China’s First Mars Mission and prospect of Deep-space exploration in China

10:30 – 11:00 **Sushil Atreya**
Mars exploration today and tomorrow

11:00 – 11:30 coffee break

LS1, Room N101

Chair: Kyeong Ja Kim

abstract ID: 099
Geology and scientific values of the Chang-E-5 landing region

abstract ID: 016
Geological characteristics of the Chang ’E-4 landing site region: Von Kármán Crater, Northwestern South Pole-Aitken Basin

abstract ID: 074
Mafic minerals of the South Pole –Aitken Basin and the geological significance of Chang’E-4 mission

abstract ID: 040
Chang’E-3 landing site mapping and rover localization results and their science and engineering applications

12:40 – 13:00* **Yong Liao Zou**
abstract ID: 154
The science goals and payloads requirement of the Chang’E-7 lunar spacecraft
TP1, Room N201

Chair: Peter Read

11:30 – 11:50* A. Cellino and P. Tanga
Abstract ID: 008
The GAIA revolution in asteroid science

11:50 – 12:10* S. Atreya and P. R. Mahaffy
Abstract ID: 012
Oxidants on Mars

Abstract ID: 020
The case for hydrothermal seafloor-type deposits in the Eridania basin on Mars

Abstract ID: 038
Strong radar echoes from the base of the Martian South Polar layered deposits and potential implications for their thermophysical conditions

Abstract ID: 033
Possible subsurface ice in the Elysium-Utopia region, low latitude of Mars detected by SHARAD

13:00-14:00 lunch break (venue: student canteen)
LS2, Room N101

Chair: Kaichang Di

14:00 – 14:20* M. Laneuville, J. Taylor, and M. Wieczorek
*abstract_ID: 014
The magmatic and magnetic evolution of the Moon: New constraints on radioactive heat source distribution and implications

14:20 – 14:40* N. Namiki
*abstract_ID: 123
Lunar crustal structure estimated from gravity field measurements

14:40 – 14:55 S. X. Gong
*abstract_ID: 068
Origin of the crustal magnetic anomalies on the Moon: Constraints from the gravity

*abstract_ID: 051
An unusual geology of Mare Imbrium

15:10 – 15:25 Z. Yue, S. Sun, and K. Di
*abstract_ID: 042
Investigation of the depth and diameter relationship of subkilometer-diameter lunar craters

*abstract_ID: 063
Ring-Moat dome structures in Mare Tranquilitatis: Distribution and morphologic diversity

TP2, Room N212

Chair: Jun Cui

14:00 – 14:20* Y. T. Lin
*abstract_ID: 035
Science questions addressed by sample return missions and the related sample curation considerations

14:20 – 14:40* T. Mikouchi, Nakhliites and Chassignites
*abstract_ID: 087
Nakhliites and chassignites Martian meteorites: Did they share a common igneous body on Mars?

14:40 – 14:55 S. Shang, H. Hui, S. Li et al.
*abstract_ID: 031
Evidence for early felsic crust on Mars

*abstract_ID: 056
Partitioning behavior of bromide and chloride during Jarosite precipitation-implications for Jarosite crystal chemistry and CL/BR fractionation on Mars

abstract_ID: 013
High resolution Phobos gravity field simulation

15:30-16:00 coffee break

Keynote and Special Invited Talks, Room N101

Chair: Wing-Huen Ip

16:00 – 16:30 Chi Wang
abstract_ID: 049
China’s Deep-Space exploration and planetary research in the past, current, and in the near future

16:30 – 16:55 Anil Bhardwaj*
abstract_ID: 053
Highlights of the Indian planetary missions and future plan

16:55 – 17:20 Kyeong Ja Kim*
abstract_ID: 039
Roles of nuclear payloads for future lunar explorations

18:30 – 20:00 Welcome Banquet
Thursday Morning, June 14

Keynote Talk, Room N101

Chair: Ziyuan Ouyang

09:00 – 09:30 **James W. Head**
abstract_ID: 130
The future of Lunar exploration: Goals, objectives and international cooperation

LS3, Room N101

Chair: Long Xiao

09:30 – 09:45 **L. Qiao, J. W. Head, L. Wilson, et al.**
abstract_ID: 061
Lunar irregular mare patch (IMP) sub-types: Linking their origin through hybrid relationships displayed at Cauchy 5 small shield volcano

09:45 – 10:00 **G. -P. Hu, R. Bugiolacchi, K. L. Chan, et al.**
abstract_ID: 059
A new map of thermal variations with depth within Oceanus Procellarum and Mare Imbrium using Chang E-2 (CE-2) microwave radiometers (MRMS) data

10:00 – 10:15 **H. H. Wang, Z. G. Meng, X. Y. Li, et al.**
abstract_ID: 137
Potential geological significance of Crisium basin revealed by CE-2 CELMS data

10:15 – 10:30 **R. Bugiolacchi**
abstract_ID: 067
Tycho crater rays – small craters distribution patterns

10:30 – 10:50* **P. H. Warren**
abstract_ID: 082
Lunar meteorites and the massive PAN (Purest Anorthosite) model: Inconvenient truths about remote sensing for planetary surface composition

11:00 – 11: 30 coffee break

LS4, Room N101

Chair: Yongliao Zou

abstract_ID: 004
Spatially resolved chemical analysis using a miniature LIMS system designed for in situ of the lunar surface

Far-UV investigation of new impact craters, cold spots and space weathering along crater facing slopes on the Moon

12:05 – 12:20 X. Zeng, K. Joy, S. Li et al. abstract_ID: 114
The fluid alteration on the Moon recorded by secondary olivine veinlets in lunar highland breccia Northwest Africa 11273

Oldest high-Ti basalt and magnesia not crustal materials I in feldspathic lunar meteorite Dhofar 1428

Lunar hydration at polar regions and implication for its sources

The formation and thermal stability of H2O/OH in plagioclase by proton implantation experiments

TP3, Room N212

Chair: Jianguo Yan

09:30 – 09:45 J. Wang, L. Xiao, J. Huang, et al. abstract_ID: 036
Geological features and evolution of Yardangs in the Qaidam basin and their analog study with Mars

09:45 – 10:00 Y. N. Dang, L. Xiao, Y. Xu abstract_ID: 111
Insight into the sequence of processes responsible for the growth of polygonal surface structures in Qaidam Basin, western China

10:00 – 10:15 T. Huang, L. Xiao, H. Wang, et al. abstract_ID: 054
Microbial diversity and lipids, preservation of sediments from Dalangtan playa in the Qaidam Basin and their astrobiological significances

10:15 – 10:35* P. Lognonne and W. B. Banerdt abstract_ID: 032
Seismic measurements on Mars and other planetary bodies

10:35 – 10:50 L. Pan, C. Quantin, C. Michaut abstract_ID: 086
The composition and stratigraphy of the northern lowlands and implications for the Insight mission
11:00 – 11:30 coffee break

TP4, Room N212

Chair: Yangting Lin

Global and local climatology of Mars and its dust cycle from assimilation of spacecraft observations

Sublimation flow in the southern hemisphere of Mars

12:10 – 12:30* E. Millour, F. Forget, A. Spiga, et al. abstract_ID: 029
The LMD Mars global climate model and Mars climate database projects

12:30 – 12:45 A. M. Palumbo and J. W. Head abstract_ID: 093
Characterizing a warm and wet early Martian climate with a 3D global climate model

Computer analysis as a replacement for experiment in space instrument development

13:00-14:00 lunch break (venue: student canteen)
Thursday Afternoon, June 14

LS5, Room N101

Chair: Xiaoping Zhang

14:00 – 14:20* T. Kobayashi
abstract ID: 027
HF radar observation of the Moon: What Kaguya lunar radar sounder saw

14:20 – 14:40* J. Haruyama
abstract ID: 134
Possible lunar lava tube and its skylight hole as resource for lunar science and exploration

14:40 – 14:55 M. Naito, J. Ishi, and N. Hasebe
abstract ID: 028
Basic experiment of neutron spectroscopy for planetary hydrogen measurement

14:55 – 15:15* G. Cremonese and the SIMBIO-SYS team
abstract ID: 069
The SIMBIO-SYS imaging camera experiment of BepiColombo and the potential impact on Mercury study

15:15 – 15:30 A. N. Deutsch and J. W. Head
abstract ID: 096
Recent deposition of ice on Mercury: New results on the ages of north polar ice deposits and implications for the Moon

15:30-16:00 coffee break

ST, Room N212

Chair: Anil Bhardwaj

14:00 – 14:15 H. Zhan
abstract ID: 117
An overview of the Chinese Space Station Optical Survey

14:15 – 14:30 Z. X. Huo, J. C. Huang, and L. Z. Meng
abstract ID: 080
CROWN: A constellation of heterogeneous wide-field NEO surveyors

abstract ID: 084
China’s space station Tiangong as laboratory and incubator for space exploration research and development

14:45 – 15:00 J. C. Huang, H. X. Liao and Z. X. Huo
Research and development on the small body exploration in CAST

abstract_ID: 092

SELMA-A mission to investigate the origin of lunar water

abstract_ID: 155

15:15 – 15:30 Q. -G. Zong, J. -S. He, and the IHP team
Interstellar Heliosphere Probes

abstract_ID: 022

15:30 – 15:45* J. -L. Zhou
Transiting bright star exoplanets in antarctic and Tibet with AST3 and TIDO

abstract_ID: 161

15:30-16:00 coffee break

16:00 – 17:30
Poster session
(Room N108)

Note.
We are pleased to announce 6 awards for the best poster presentation with certificate and a monetary award of HKD 1,000. The winners will be announced at the morning (9:00 am -9:30 am) of June 15.
Friday Morning, June 15

09:00 - 09:30 Awards for Best Poster Presentation, Room N101

SB1, Room N101

Chair: Nobuyuki Hasebe

09:30 – 09:50* S. Kwok
Organics in the solar system

abstract_ID: 081

09:50 – 10:10* G. Fillachione
A comparative study of the surface properties of asteroids and comets from an infrared perspective

abstract_ID: 001

10:10 – 10:30* C. Tubiana, H. Sierks, and the OSIRIS team
The Rosetta comet 67P/Churyumov-Gerasimenko through the eyes of OSIRIS:
Major results and expectations for the exploration of a main-belt comet

abstract_ID: 125

Water vapor deposition from the inner gas coma onto the nucleus of comet 67P/Churyumov-Gerasimenko

abstract_ID: 018

10:45 – 11:00 Z. Wang
The study of radio observation of comets

abstract_ID: 076

11:00 – 11:30 coffee break

SB2, Room N101

Chair: Peter Wurz

Ceres as observed by Dawn/VIR: Mineralogical and thermal mapping of a dwarf planet in the main asteroid belt

abstract_ID: 002
abstract_ID: 085

The asteroid spin-rate study using wide-field surveys

12:05 – 12:20 X. P. Lu and D. Jewitt
abstract_ID: 145

Binary asteroid simulation and relationship between magnitude variation and shape axis-ratio

abstract_ID: 119

Density and porosity of meteorite and the implication to asteroid structure

PS1, Room N212

Chair: Lou-Chuang Lee

09:30 – 09:50* L. Li, Y.T Zhang, B. Zhou et al.
abstract_ID: 045

Dust levitation and transport over the surface of the Moon

abstract_ID: 116

Numerical simulation of lunar dust transportation in specific regions of the Moon

abstract_ID: 041

The effect of spacecraft charging and outgassing on the LADEE ion measurements

abstract_ID: 015

The energetic particle environment of the lunar nearside

10:40 – 10:55 D. W. Guo, X. P. Zhang, L. H. Xie
abstract_ID: 121

Backscattered solar wind entry into the lunar wake from ARTEMIS observation

11:00 – 11:30 coffee break

PS2, Room N212

Chair: Qiugang Zong

abstract_ID: 048

Investigation of Mercury plasma/particle environment by MPPE (Mercury Plasma Particle Experiment) on BepiColombo/MMO
11:50 – 12:05 J. T. Zao, Q. -G. Zong, and W. J. Sun
abstract_ID: 149
A statistical study of Mercury’s flux rope with strong core field

abstract_ID: 108
Formations of magnetic flux ropes Kelvin-Helmholtz vortices and radio waves in planetary environments

12:25 – 12:40 J. Yu, L. Y. Li and J. Cui
abstract_ID: 100
Intense low-frequency whistler-mode waves with periodic rising-tone observed in high-density region

12:40 – 12:55 X. D. Gu and J. Huang
abstract_ID: 079
Case study of whistler mode chorus using JUNO data

13:00-14:00 lunch break (venue: student canteen)
Friday Afternoon, June 15

SB3, Room N101

Chair: Liping Qin

14:00 – 14:20 *N. Hasebe, M. Naito, K. J. Kim, et al.
abstract_ID: 026
Neutron and gamma-ray spectroscopic measurements at near-Earth asteroids and comets

14:20 – 14:35 T. Ma and J. Chang
abstract_ID: 046
Gamma-ray spectrometer for asteroid mission in China

abstract_ID: 104
Photometric results of DESTINY+mission target asteroid 3200 Phaethon (1983 TB) during the 2017 apparition

abstract_ID: 060
(3200) Phaethon observing campaign: Ground-based observations of the Lulin observatory team

abstract_ID: 090
The capture statistics of Triton as a probe to the original population of trans-Neptunian objects

15:20 – 15:35 C. -Y. Dong and L. -Y. Zhou
abstract_ID: 102
On the close encounters between Plutinos and Neptune Trojans

15:30-16:00 coffee break

SB4, Room N101

Chair: Xiaoping Lu

16:00 – 16:15 J. W. Zhao and L. Xiao
abstract_ID: 075
Shock effects of quartz and zircons in basement granite and impact breccia drilled from the peak ring of the Chicxulub impact crater, Mexico

16:15 – 16:30 Z. Y. Xiao
abstract_ID: 006
Search for potential impact craters in China
16:30 – 16:45 J. Pu, Z. Y. Xiao and H. J. Hui
Tektites in China

16:45 – 17:00 L. Qin, J. Liu, K. Zhu, et al.
The formation of chondrules, a CR isotope perspective

17:00 – 17:15 Z. Guo, Y. Li, Z. Xie, et al.
The origin of Metallic iron in a highly shocked ordinary chondrite

OP1, Room N212

Chair: Michel Blanc

14:00 – 14:20* A. P. Showman
Atmospheric dynamics of Jupiter and hot Jupiters

Convective Dynamics of Gaseous Planets

14:40 – 15:00* D. L. Kong, K. Zhang, and G. Schubert
Jupiter’s equatorially anti-symmetric gravitational field and its interior dynamics

15:00 – 15:15 D. D. Ni
Empirical models of Jupiter’s interior from JUNO data: Moment of inertia and tidal Love number K_2

15:15 – 15:30 K. Lam, D. L. Kong, and K. Zhang
Nonlinear thermal inertial waves in planetary fluid systems

15:30-16:00 coffee break

OP2, Room N212

Chair: KeKe Zhang

16:00 –16:20* J. Cui
Sources of Titan's ionosphere
abstract_ID: 047

>The ring atmosphere/ionosphere revisited using results from the Cassini Grand Finale mission

16:35 – 16:50 H. S. Shi and W. -H. Ip
abstract_ID: 107

>The atmosphere of Pluto and other icy dwarf planets

16:50 – 17:10* J. Yang, F. Ding, R.M. Ramirez, et al.
abstract_ID: 070

>Climate change and the habitability of icy worlds: Europa and Enceladus

17:10 – 17:30* M. Blanc
abstract_ID: 152

Science goals and mission objectives for the future exploration of the Jupiter system: A horizon 2061 perspective
Poster session

Suggested poster size: 120 cm (h) x 90 cm (w)

Poster board size: 170 cm (h) x 90 cm (w)

(Venue: Room N108)

Moon (No. 001 - 026)

No. 001. Y. Q. Qian, L. Xiao, G. X. Wang, et al. [abstract ID: 010]

Geomorphological features and regolith properties of the China’s Chang’E-5 landing region on the Moon

No. 002. G. G. Kochemasov [abstract ID: 011]

Mare Orientale – an impact or a regular tectonic features?

No. 003. Y. C. Wang and Z. Y. Xiao [abstract ID: 023]

What is the minimum confidential diameter for crater statistics?

No. 004. M. Naito, J. Ishi, and N. Hasebe [abstract ID: 028]

Basic experiment of neutron spectroscopy for planetary hydrogen measurement

No. 005. C. P. Tang, K. Sawchuk, and P. H. Warren [abstract ID: 037]

A textural/mineralogical gradient within vitrophyric mare basalt NWA 8632

No. 006. T. M. Wang, Q. Huang, and J. N. Zhao [abstract ID: 050]

The Gardner volcanic complex of the Moon: Geological characteristics and its volcanic activity

No. 007. Y. Li, A. T. Basilevsky, M. G. Xie, W. –H. Ip [abstract ID: 147]

Correlations between ejecta boulder spatial density of small lunar craters and the crater age

No. 008. Y. Z. Wu and B. Hapke [abstract ID: 052]

Micro-scale thermal characteristics of the Moon: Results from the Chang’E-3 in situ spectra

No. 009. B. Wu, J. Huang, and Y. Li, et al. [abstract ID: 062]

Rock abundance at the candidate Chang’E-5 landing region on the Moon
Forming the Moon’s nearside-farside dichotomies via giant impact

abstract_ID: 064

No. 011. S. Schwinger and M. -H. Zhu
Compositional changes in the lunar mantle resulting from giant impact-induced melting

abstract_ID: 065

No. 012. Y. Harada and K. Matsumoto
A comparative study on tidal dissipation of the solid Earth and Moon with internal structures including low-viscosity layers

abstract_ID: 089

No. 013. T. K. Dong and Z. Z. Ren
Spallation reactions and cosmogenic nuclei on lunar surface

abstract_ID: 091

No. 014. A. N. Deutsch and J. W. Head
Impact-bombarded ice on the Moon: Assessing the link between the ages of lunar polar deposits and their spatial heterogeneity

abstract_ID: 097

Lunar regolith stratigraphy analysis based on the simulation of lunar penetrating radar signals

abstract_ID: 109

No. 016. F. Yang, Y. Xu, and G. P. Hu
A possible signature of water ice on the Moon with Chang’E-2 microwave radiometer data

abstract_ID: 113

No. 017. J. D. Zhang, Z. G. Meng, and J. S. Ping
Diurnal temperature characteristics of the lunar surface based on a real-time temperature model: A case studying at Sinus Iridum

abstract_ID: 124

No. 018. T. Y. Xu, J. F. Cao, and Y. Z. Wu
High angle phase curve studies on Chang’E-3 landing site using PCAM data

abstract_ID: 118

No. 019. Y. Li, X. P. Zhang, W. D. Dong et al.
Simulation of the production rates of cosmogenic nuclides on the Moon based on Geant4

abstract_ID: 120

No. 020. J. W. Head and L. Wilson
Controls of lunar basaltic volcanic eruption structure and morphology: Gas release patterns in sequential eruption phases

abstract_ID: 132

No. 021. J. W. Head, L. Wilson and F. Zhang
A theoretical model for the formation of ring most dome structures (RMDS): Products of second boiling in the distal parts of lunar basaltic lava flows

abstract_ID: 133

No. 022. L. C. Wang, J. R. Liang, and X. L. Tian
An auto Lunar Rille extraction algorithm based on mathematical morphology and Hough transform

abstract_ID: 150
No. 023. M. G. Xie, Z. Y. Xiao, and A. A. Xu
abstract_ID: 129
Modeling the growth of regolith on the Moon: Implication for the evolution of crater and impact or populations

No. 024. Z. C. Cai and T. Lan
abstract_ID: 140
Lunar brightness temperature model based on the microwave radiometer data of Chang'E-2

No. 025. L. Richter, J. Biswas, A. Jaime et al.
abstract_ID: 156
OHB instruments development for volatile scouting on the Moon

No. 026. B. Ye, Z. C. Cai, T. Lan et al.
abstract_ID: 165
CE-3 lunar panoramic camera image stitching

Terrestrial planets (No. 027 - 044)

No. 027. X. H. Fu and A. L. Wang
abstract_ID: 077
Crystallinity effects on the vibrational spectral features of saponite: Implications for characterizing poorly crystalline phyllosilicates on Mars

No. 028. S. Dell'Agnello, D. Currie, G. DelLe Monache, et al.
abstract_ID: 128
Next-generation lunar and Martian laser retroreflectors for research and exploration

No. 029. B. L. Ye and J. Huang
abstract_ID: 007
The geomorphology of polygonal features of chloride-bearing deposits on Mars and its hydrological implication

No. 030. J. Xiao, K. -C. Chow, K. -L. Chan
abstract_ID: 066
Dynamic processes of Martian dust storms in the northern mid-latitude region during the storm season

No. 031. A. M. Palumbo and J. W. Head
abstract_ID: 094
The mineralogical alternation history of early Mars: The role of large craters and basins in transient regional high-temperature alteration

No. 032. K. T. Tsang and C. C. Zhao
abstract_ID: 095
A lunar gravity assisted trip to Mars

No. 033. Q. Xu, X. J. Xu and Q. Chang
abstract_ID: 105
The response of Venusian induced magnetosphere to an extremely strong magnetic cloud

abstract_ID: 122
Strategy of planetary observation by Using RISESAT micro-satellite and ground-based telescopes
No. 035. M. Imai, T. Kouyama, Y. Takahashi et al.
abstract_ID: 135
Long-term monitoring of planetary-scale waves on Venus

No. 036. J. W. Head
abstract_ID: 131
Deciphering the Noachian geological and climate history of Mars

No. 037. J. Cui, R. V. Yelle, L. -L. Zhao et al.
abstract_ID: 142
The impact of crustal magnetic fields on the thermal structure of the Martian upper atmosphere

No. 038. J. Cui
abstract_ID: 143
Ionization efficiency in the dayside Martian upper atmosphere

No. 039. F. Wang
abstract_ID: 158
Radar observation of Mars surface/subsurface of seasonal streaks areas

No. 040. N. Wang, Z. He
abstract_ID: 162
Tidal evolution of the Earth-Moon system influenced by climate change

No. 041. J. Zhao, L. Xiao, T. D. Glotch
abstract_ID: 071
Paleolakes in the northwest Hellas region: Implications for paleo-climate and regional geologic history

No. 042. Q. A. Parker
abstract_ID: 136
HKU's laboratory for space research - an interdisciplinary nexus for the future

No. 043. Y. Yang, M. S. Bramble, R. E. Milliken et al.
abstract_ID: 163
Data reduction of FTIR thermal emission measurements based on interferograms

No. 044. S. Zhao , Q. Yuan and L. Zhang
abstract_ID: 164
Crism images quality improvement by low-rank constraint model

Small Bodies (No. 045 - 054)

abstract_ID: 017
Dust jet and mass transport of comet 67P/Churumov-Gerasimenko

abstract_ID: 019
A global behavior model for 2018 apparition of comet 46P/Wirtanen

abstract_ID: 072
The observation planning of Earth quasi-satellites using Gran Telescopio CANARIS (GTC) Telescope

No. 048. J. Z. Liu, X. Zhang, and Y. H. Wang
abstract_ID: 078
Multi-color observation of active comets
abstract_ID: 103
The formation of Stickney crater on Phobos and its ejecta trajectory distributions

No. 050. X. J. Huang, X. P. Lu, and H. B. Zhao
abstract_ID: 106
Photometric model analysis based on H-G1-G2 magnitude system for inversion process of asteroids

No. 051. T. S. Yeh, C. K. Chang et al.
abstract_ID: 110
A joint study of the spin rate distribution of the Main-Belt asteroids using the CNEOST at Xu-Yi Observatory

No. 052. K. D. Su and J. W. Zhao
abstract_ID: 146
Auto sorting of grain composition of Breccia in Chicxulub Crater

No. 053. H. B. Zhao
abstract_ID: 083
Research on asteroid physical characteristics and its distribution

No. 054. L. Y. Xu, N. Hirata, and H. Miyamoto
abstract_ID: 157
The Apex-Antapex cratering asymmetry on Ganymede and Callisto: Implications to the sources of their impactors

Outer Planets (No. 055-061)

abstract_ID: 057
A statistical study of Titan’s upper atmospheric and ionospheric composition and distributions from Cassini

abstract_ID: 115
The possible existence of a CH4 Torus around Saturn: Implications on CH4 escape from Titan

No. 057. T. Cai and K. L. Chan
abstract_ID: 058
Simulation of upward overshooting with rotation in F-boxes

No. 058. W. -H. Ip
abstract_ID: 138
Charting a course to uncharted territories in deep space

No. 059. H. Gu, J. Cui, and D. D. Niu
abstract_ID: 153
Monte Carlo calculations of Titan’s atmospheric escape by sputtering

No. 060. K. L. Chan and T. Cai
abstract_ID: 055
Closely-packed cyclonic vortices in rotating convection zone

No. 061. F. -Y. Jiang, J. Cui and J.-Y. Xu
abstract_ID: 005
Species-dependent ion escape on Titan
Solar system plasmas (No. 062 - 067)

No. 062. K.V. Tam and A.W. Hood
abstract ID: 030
Coronal heating by magnetic reconnection in loops - Thermal conduction and optically thin radiation effects

abstract ID: 073
Simulation of the image of the Earth’s plasmasphere observed by the EUV image in CE-3 from the lunar orbit

No. 064. J. Wang, L. C. Lee, and X. J. Xu
abstract ID: 101
Dependence of Kelvin-Helmholtz vortices on the magnetic field topology near Martian ionosphere by MAVEN

No. 065. Q. Chang, X. J. Xu, and Q. Xu
abstract ID: 112
Multiple-point modeling the Parker spiral configuration of the solar wind magnetic field at solar minimum and maximum

No. 066. H. T. Liu, F. Ding, X. Yue, et al.
abstract ID: 144
Ionospheric responses to the shock waves generated by 5 launches of China’s Long March 2F rocket

abstract ID: 009
Field aligned photoelectron energy peaks at high altitude and nightside of Titan